Publications
O. Zekri, A. Odonnat, A. Benechehab, L. Bleistein, N. Boullé, and I. Redko, Large Language Models as Markov Chains, submitted, 2024. arxiv
T. J.B. Liu, N. Boullé, R. Sarfati, and C. J. Earls, Density estimation with LLMs: a geometric investigation of in-context learning trajectories, submitted, 2024. arxiv
R. Sarfati, T. J.B. Liu, N. Boullé, and C. J. Earls, Lines of Thought in Large Language Models, submitted, 2024. arxiv
N. Bouziani and N. Boullé, Structure-Preserving Operator Learning, submitted, 2024. arxiv
N. Boullé and M. Colbrook, Multiplicative Dynamic Mode Decomposition, submitted, 2024. arxiv
D. Persson, N. Boullé, and D. Kressner, Randomized Nyström approximation of non-negative self-adjoint operators, submitted, 2024. arxiv
T. J.B. Liu, N. Boullé, R. Sarfati, and C. J. Earls, LLMs learn governing principles of dynamical systems, revealing an in-context neural scaling law, EMNLP (2024). arxiv
N. Boullé, D. Halikias, S. E. Otto, and A. Townsend, Operator learning without the adjoint, to appear in J. Mach. Learn. Res., 2024. arxiv
N. Boullé and M. Colbrook, On the Convergence of Hermitian Dynamic Mode Decomposition, submitted, 2023. arxiv
N. Boullé and A. Townsend, A Mathematical Guide to Operator Learning, Handbook of Numerical Analysis 25 (2024). arxiv
N. Boullé, A. Herremans, and D. Huybrechs, Multivariate rational approximation of functions with curves of singularities, to appear in SIAM J. Sci. Comput., 2024. arxiv
N. Boullé, D. Halikias, and A. Townsend, Elliptic PDE learning is provably data-efficient, PNAS 120(39) (2023), e2303904120. arxiv
F. Laakmann and N. Boullé, Bifurcation analysis of a two-dimensional magnetic Rayleigh-Bénard problem, Physica D 467 (2024), 134270. arxiv
H. Praveen, N. Boullé, and C. Earls, Principled interpolation of Green's functions learned from data, Comput. Methods Appl. Mech. Eng. 409 (2023), 115971. arxiv
N. Boullé, I. Newell, P. E. Farrell, and P. G. Kevrekidis, Two-component three-dimensional atomic Bose-Einstein condensates supporting complex stable patterns, Phys. Rev. A 107 (2023), 012813. arxiv
N. Boullé, S. Kim, T. Shi, and A. Townsend, Learning Green's functions associated with time-dependent partial differential equations, J. Mach. Learn. Res. 23(218) (2022), 1-34. arxiv
N. Boullé, P. E. Farrell, and M. E. Rognes, Optimization of Hopf Bifurcation Points, SIAM J. Sci. Comput. 45(3) (2023), B390-B411. arxiv
N. Boullé, P. E. Farrell, and A. Paganini, Control of bifurcation structures using shape optimization, SIAM J. Sci. Comput. 44(1) (2022), A57-A76. arxiv
N. Boullé and A. Townsend, A generalization of the randomized singular value decomposition, ICLR (2022). arxiv
N. Boullé, C. J. Earls, and A. Townsend, Data-driven discovery of Green's functions with human-understandable deep learning, Sci. Rep. 12 (2022), 4824. arxiv
N. Boullé, J. Słomka, and A. Townsend, An optimal complexity spectral method for Navier-Stokes simulations in the ball, 2021. arxiv
N. Boullé, V. Dallas, and P. E. Farrell, Bifurcation analysis of two-dimensional Rayleigh-Bénard convection using deflation, Phys. Rev. E 105(5) (2022), 055106. arxiv
A. J. Ellingsrud, N. Boullé, P. E. Farrell, and M. E. Rognes, Accurate numerical simulation of electrodiffusion and osmotic water movement in brain tissue, Math. Med. Biol. 38(4) (2021), 516-551. arxiv
N. Boullé and A. Townsend, Learning elliptic partial differential equations with randomized linear algebra, Found. Comput. Math. 23 (2023), 709-739. arxiv
N. Boullé, E. G. Charalampidis, P. E. Farrell, and P. G. Kevrekidis, Deflation-based identification of nonlinear excitations of the three-dimensional Gross-Pitaevskii equation, Phys. Rev. A 102(5) (2020), 053307. arxiv
N. Boullé, Y. Nakatsukasa, and A. Townsend, Rational neural networks, NeurIPS 33 (2020). arxiv
E. G. Charalampidis, N. Boullé, P. E. Farrell, and P. G. Kevrekidis, Bifurcation analysis of stationary solutions of two-dimensional coupled Gross-Pitaevskii equations using deflated continuation, Commun. Nonlinear Sci. Numer. Simulat. 87 (2020), 105255. arxiv
N. Boullé and A. Townsend, Computing with functions in the ball, SIAM J. Sci. Comput. 42(4) (2020), C169-C191. arxiv
N. Boullé, V. Dallas, Y. Nakatsukasa, and D. Samaddar, Classification of chaotic time series with deep learning, Physica D 403 (2020), 132261. arxiv
PhD Thesis (University of Oxford, 2022): Data-driven discovery of Green's functions